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Abstract. The parallel transport in semiconductor superlattices and the associated transfer of
electrons from high- to low-mobility layers are treated on the basis of quantum kinetic equations.
Due to the assumed dominant role of impurity scattering in the barriers, the description of
transport properties simplifies considerably. The superlattice band structure is replaced by a
two-band model that simulates electronic states in the narrow quantum wells and in the adjacent
broad barriers. Using the quasi-elastic approximation for the electron–phonon scattering in the
narrow miniband, analytical results are derived for the current density that provide a qualitative
understanding of the main physics taking place in the device. The approximate description of
the real-space transfer encompasses scattering on acoustic and optical phonons as well as on
impurities. Particular emphasis is put on the negative differential resistance and its dependence
on the well width.

1. Introduction

Research into nonlocal nonlinear transport leading to N-shapedI–V characteristics with
an associated static negative-differential-resistance (NDR) region has evolved considerably
over the past decade [1]. One prominent example is the parallel transport in semiconductor
superlattices composed of high-mobility wells spatially separated by low-mobility barriers.
The transfer of electrons into the low-mobility region increases the resistance and may
lead to NDR [1]. One transfer mechanism is due to tunnelling through potential barriers
between adjacent wells. This so-called quantum-state transfer (QST) has been studied in
[2–4]. Another mechanism is the real-space transfer (RST) where electrons are heated to
energies higher than the barrier and transferred via thermionic emission [1]. In order to
get an appreciable NDR effect due to the RST mechanism, the electronic properties must
differ remarkably on different sides of the heterojunction. The possibility of obtaining an
N-shaped NDR effect from the concept of RST has been demonstrated both experimentally
and theoretically [1]. The experimental verification is difficult, because homogeneous fields
are unstable in the NDR regime and the domain formation must be suppressed. A promising
method is the fast-measuring technique that guarantees that the duration of the measurement
is sufficiently short in comparison to the formation of domains. Such measurements
were used to study nonlinear transport in bulk materials decades ago, and exploited by
Masselinket al [5–7] to treat parallel transport in heterostructures. Furthermore, it has
been demonstrated from a stability analysis of the homogeneous steady state that both
homogeneous current oscillations and travelling field domains, associated with real-space
transferred electrons, may exist [8–10].
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Although NDR effects can be confirmed experimentally, the study of their origin greatly
benefits from theoretical investigations. This allows a physical understanding of the effects
taking place in the device to be achieved and may be useful in optimizing the structure for
a particular operation. Up to now most theoretical work in this field considered periodic
structures and multiple quantum wells and relied on Monte Carlo simulations [11, 12] or
electron temperature models [13, 14] (for a review see [1]). Although these calculations
are designed to yield reliable numerical results and include, therefore, the interaction of
electrons with phonons as well as the intervalley and alloy scattering, there remains the
task of constructing a simple transparent theory with a minimum of assumptions and model
parameters, in order to gain a deeper physical understanding of the main mechanisms. The
states in the narrow high-mobility region of the RST structure are quantized, so quantum
mechanical effects are strongly manifest. In this case the transport problem requires the
consideration of quantum kinetic equations. The distribution functions of electrons that
escape a localized state in quantum wells as an effect of a phonon-mediated real-space
transfer have not been thoroughly investigated so far. The conventional Monte Carlo method
does not apply to quantum transport, and quantum Monte Carlo calculations are still too
time consuming to permit a realistic simulation.

Here we present a transparent quantum mechanical treatment of the hot-electron
transport problem related to RST, which includes quantum wells separated by broad layers
in which the quantization of the electron motion in the growth direction is not so essential.
Our main objective in this paper is the development of an analytic theory that describes the
spatial redistribution of electrons in superlattices due to accelerating parallel electric fields.
In the next section the quantum kinetic equations are considered and solved analytically. In
section 3 our basic results are used to derive an analytic expression for the current density,
which describes RST of electrons between the low- and high-mobility transport channels
under the influence of scattering on impurities as well as acoustic and optical phonons.
Finally, section 4 summarizes our main results.

2. The quantum kinetic equations

The electronic transport in semiconductor superlattices is well described by the quantum
kinetic equation for the Wigner transformed elements of the density matrixf ν

′
ν (k), whose

explicit spatial dependence leading to the domain formation is not taken into account. The
elements of the density matrix with respect to the miniband indicesν andν ′ are the solutions
of the following integro-differential equation [15]:{
e

h̄
E · ∇k + i

h̄
[εν ′(k)− εν(k)]

}
f ν
′

ν (k)+
ieE

h̄

∑
µ

[Qµν(k)f
ν ′
µ (k)−Qν ′µ(k)f

µ
ν (k)]

=
∑
µµ′

∑
k1

f µ
′

µ (k1)W
µ′ν ′
µν (k1,k) (1)

whereE is the constant electric field,εν(k) the energy band structure of theνth miniband
andQµν(k) the momentum matrix element:

Qµµ′(k) = 1

i

∑
G

χµ′(k +G)∇kχ
∗
µ(k +G). (2)

Qµν is a measure of the wavefunction overlap calculated from the superlattice envelope
functionsχµ (G is the reciprocal-lattice vector). TheQ-term in the kinetic equation (1)
is associated with off-diagonal elements of the density matrix (f 1

2 andf 2
1 for a two-band
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model) and describes electric-field-mediated transitions via Zener tunnelling. If the electric
field is aligned parallel to the layers and nonparabolicity is not taken into account, this term
vanishes because the corresponding component of the envelope function is simply given
by the normalizing constant. Another transfer mechanism, which becomes relevant if the
energy gapεg between two minibands is larger than the thermal energy of electronskBTe
(with Te being a characteristic electron temperature), is due to scattering on phonons or
impurities described by off-diagonal elements of the scattering probability (W 12

12 andW 21
21

for a two-band model). In this paper we consider this special case and specialize to a
two-band model. We retain besides the diagonal elements of the scattering probability only
the interband matrix elementsW 12

12 andW 21
21. In this case the quantum kinetic equation (1)

simplifies and takes the following form:
e

h̄
E · ∇kf

1
1 (k) =

∑
k′
f 1

1 (k
′)W 11

11(k
′,k)+

∑
k′
f 2

2 (k
′)W 21

21(k
′,k) (3)

e

h̄
E · ∇kf

2
2 (k) =

∑
k′
f 2

2 (k
′)W 22

22(k
′,k)+

∑
k′
f 1

1 (k
′)W 12

12(k
′,k). (4)

As we do not expect any significant effect due to Wannier–Stark localization, it is understood
in equations (3) and (4) that the scattering probabilities do not depend on the electric field.
Since only the diagonal elements of the distribution function enter equations (3) and (4)
the notation can be simplified by dropping one band index (f νν → fν). Decomposing the
distribution function into its symmetric and antisymmetric contributions the symmetric part
of equations (3) and (4) can be written more explicitly as

e

h̄
E · ∇kf

a
ν (k) =

∑
q

vphνq (k)

{
f sν (k + q)e(εν (k+q)−εν(k))/2kBT − f sν (k)e−(εν (k+q)−εν(k))/2kBT

}
+
∑
q

v
ph

12q(k)

{
f sν (k + q)e(εν (k+q)−εν(k))/2kBT − f sν (k)e−(εν (k+q)−εν(k))/2kBT

}
+
∑
q

viνq(k)
{
f sν (k + q)− f sν (k)

}+∑
q

vi12q(k)
{
f sν (k + q)− f sν (k)

}
(5)

where ν = 2 if ν = 1 and vice versa. The electron–phonon matrix elements entering
equation (5) are expressed by

vphνq (k) = 2πh̄
ω2
q|γνν(q)|2

2 sinh(h̄ωq/2kBT )

{
δ(εν(k + q)− εν(k)− h̄ωq)

+ δ(εν(k + q)− εν(k)+ h̄ωq)
}

(6)

v
ph

12q(k) = 2πh̄
ω2
q|γ12(q)|2

2 sinh(h̄ωq/2kBT )

{
δ(ε1(k + q)− ε2(k)+ h̄ωq)

+ δ(ε1(k + q)− ε2(k)− h̄ωq)
}

(7)

with γνν ′ being the electron–phonon coupling constant andωq the phonon frequency. Similar
expressions hold for the elastic impurity scattering but their explicit form is not relevant for
our present consideration.

Bearing in mind that an appreciable NDR effect only exists if the electronic properties
differ remarkably in the two minibands, further progress in the analytic solution of equation
(5) is related to studying such systems. The low-mobility carriers in the upper band will not
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be heated significantly since the power input per electron is small. Therefore, it is a good
first approximation to neglect electron heating in the upper band. In addition, it is reasonable
to assume [4] that the impurity scattering is the most dominant interband scattering
mechanism, too. Under these conditions the electron–phonon scattering contributions nearly
compensate the small drift term on the left-hand side of equation (5), leading to considerable
simplifications of the kinetic equation for electrons in the upper band. We obtain∑
q

vi2qδ(ε2(k + q)− ε2(k))[f
s
2 (k + q)− f s2 (k)]

+
∑
q

vi12qδ(ε1(k + q)− ε2(k))[f
s
1 (k + q)− f s2 (k)] = 0 (8)

where thek-dependence of the impurity matrix elements has been explicitly written down.
Equation (8) expresses the fact that the particle balance under the influence of impurity
scattering is essential for the determination of the symmetric part off2. This equation
directly relates the distribution functions of the lower and upper bands, and has the simple
solution

f sν (k) = f (εν(k)) (9)

where the up-to-now unknown functionf (ε) is determined from the remaining equation
for the distribution function of the lower miniband (ν = 1). As a result of this approximate
treatment of electrons in the upper band, the distribution functionsf sν (k) depend on the band
index ν and wavenumberk only via the energy dispersion relationεν(k). On substituting
the solution (9) into the kinetic equation (5) (forν = 1) the impurity contributions cancel
each other and the distribution function is obtained from a kinetic equation that describes
quasi-two-dimensional (Q2D) electrons in the narrow low miniband coupled to phonons.
Consequently, equation (5) simplifies considerably and takes the following form for the
narrow miniband (ν = 1):
e

h̄
E · ∇kf

a
1 (k) =

∑
k′

[W(k′,k)f s1 (k
′)(1− f s1 (k))−W(k,k′)f s1 (k)(1− f s1 (k′))]. (10)

Within the momentum–time approximation the antisymmetric part is obtained from

f aν (k) = −
eh̄

m
k ·Eτ(εν(k))

df (εν(k))

dεν(k)
. (11)

For an energy-dependent scattering timeτ , the unknown functionf (ε) is the solution
of an integro-differential equation according to equations (9)–(11). The different current
contributions in the lower and upper bands are calculated fromf aν (k). In equation (10)
the scattering probabilityW accounts for electron–phonon scattering in a Q2D electron
gas. Our consideration shows that the quantum mechanical description of NDR via the
RST mechanism simplifies considerably due to the assumed large difference in the impurity
scattering rate between the lower and upper minibands. The problem of solving the set
of kinetic equations for the components of the distribution function reduces to the single-
band case of an isolated Q2D electron gas. Within the framework of the quasi-elastic
approximation, equations (10) and (11) are solved in the next section.

3. Solution of the kinetic equation in the quasi-elastic limit

In section 2 it has been demonstrated how the set of quantum kinetic equations simplifies
for a RST structure exhibiting NDR. In this case the task of deriving an analytical solution
for the distribution functions and the related current density becomes tractable. To proceed
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Figure 1. The superlattice energy band structure (left) and its approximate description in terms
of quasi-2D and quasi-3D energy bands (right).

in this direction we replace the superlattice band structure by an energy dispersion that
corresponds to a two-dimensional (2D) and three-dimensional (3D) electron gas related to
the narrow miniband and broad upper superlattice bands, respectively. This replacement
is illustrated in figure 1, whereL denotes the superlattice period andεg the energy gap
between the lowest miniband and the next one. Using these simplified dispersion relations
we are able to derive a quantum mechanical description of how NDR may occur in a RST
structure. This qualitative analysis is intended to emphasize the main physical mechanisms.
To make further progress we will focus on the quasi-elastic scattering limit in the remaining
part of the paper. In this case a momentum average of equations (10) and (11) results in
an equation for the symmetric part of the distribution functionf1:

(eE)2

m
g2D(ε)ετ(ε)

df s1
dε
=
∫ ε

0
dε′ g2D(ε

′)
∫ ∞

0
dε′′ g2D(ε

′′)

× [W(ε′, ε′′)f s1 (ε
′)(1− f s1 (ε′′))−W(ε′′, ε′)f s1 (ε′′)(1− f s1 (ε′))]

≡
∫ ε

0
dε′ I (ε′) (12)

whereg2D(ε) =
∑
k δ(ε− ε1(k)) is the 2D density of states (DOS). The elastic part of the

scattering probability is given by the momentum average

W(ε′, ε) = 1

g2D(ε)g2D(ε′)

∑
k,k′

W(k′,k)δ(ε − ε1(k))δ(ε
′ − ε1(k

′)). (13)

As a next step within the framework of the quasi-elastic approximation, all terms inI (ε)

are expanded up to second order in(ε− ε′) [16]. Using this approximation we arrive at the
representation

I (ε) = −Q(ε)g2
2D(ε)

[
f s1 (ε)(1− f s1 (ε))

kBT
+ df s1 (ε)

dε

]
− D(ε)

2

d

dε

(
g2

2D(ε)

[
f s1 (ε)(1− f s1 (ε))

kBT
+ df s1 (ε)

dε

])
(14)
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which depends on the first energy moments

Q(ε) =
∫ ∞

0
dε′ (ε′ − ε)w(ε′, ε) D(ε) =

∫ ∞
0

dε′ (ε′ − ε)2w(ε′, ε). (15)

The scattering probabilityw(ε′, ε) = W(ε′, ε)exp
{
(ε − ε′)/2kBT

}
is symmetric inε and

ε′. Making use of equation (14) and considering that dD(ε)/dε ≈ 2Q(ε) is valid in the
quasi-elastic limit, the following analytical solution is derived from equation (12):

f s1 (ε) ≡ f (ε) =
1

A expy(ε)+ 1
(16)

which has the form of a Fermi distribution function with an electric-field-dependent exponent
given by

y(ε) =
∫ ε

0

dε′

kBTe(ε′)
Te(ε) = T [1+ 2(eE)2ετ(ε)/(m1D(ε)g2D(ε))]. (17)

Te can be identified with an electric-field-dependent electron temperature. Starting from the
kinetic equations we were able to demonstrate under which conditions the redistribution of
carriers can be described by an effective-electron-temperature model. It is a peculiarity of
equations (9), (16) and (17) that the electron temperatures of the two bands are expressed
by the same function, but calculated at different energies. This simple result reminds of the
paper by McCumber and Chynoweth [17] who treated intervalley transitions with a common
electron temperature for different bands. The normalization constantA in equation (16) is
determined from the electron densityn via

n =
∑
k

(f s1 (k)+ f s2 (k)). (18)

For a nondegenerate electron gas, Boltzmann statistics applies andA can explicitly be
obtained from

A = n
/[C2

L

∫ ∞
0

dε e−y(ε) + C3

∫ ∞
0

dε
√
εe−y(ε+εg)

]
(19)

where constants have been introduced:

C2 = m1

2πh̄2 C3 = 1

(2π)2

(
2m2

h̄2

)3/2

(20)

which are remnants of the 2D and 3D DOS, respectively. The current density is calculated
from the antisymmetric part of the distribution functions (equation (11)) and the drift
velocities according to

j = j1+ j2 ji = e
∑
k

vi(k)f
a
i (k). (21)

From equations (11), (16), (19) and (21) our final analytical result for the current density
is obtained:

j = e2En

m

(
C2

LC3

∫ ∞
0

dε e−y(ε) d(ετ (ε))/dε + τimp
∫ ∞

0
dε
√
εe−y(ε+εg)

)
×
(
C2

LC3

∫ ∞
0

dε e−y(ε) +
∫ ∞

0
dε
√
εe−y(ε+εg)

)−1

(22)

where τimp is the dominant scattering time of the upper 3D energy band that is due to
impurity scattering. The quasi-two-dimensional electron gas has a high mobility, but a
low DOS. The situation for the upper band is opposite. There the electrons have a low
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mobility, but the DOS is high. At low electric fields,f s1 approaches the Fermi function. In
this case most electrons occupy the lowest miniband and the 3D current contribution is cut
exponentially by the energy gapεg. Therefore, the current is mainly due to electrons that
are accelerated in the high-mobility channels. With increasing electric fields, the electron
temperature increases, so the exponential dependence onεg becomes ineffective. As the
DOS of the 3D extended states exceeds the corresponding one of 2D electrons, the current
starts to arise mainly from 3D electrons in the low-mobility barriers. We conclude that
in the RST device considered, the asymptotic field dependence of the current is mainly
determined by electrons in the high- (low-) mobility region of the sample at low (high)
electric fields, which may give rise to NDR.

3.1. Scattering on acoustic phonons

In this subsection we will restrict our consideration to acoustic phonons, though at high
electric fields the main cooling mechanism of electrons is due to emission of optical phonons.
This artificial restriction is dropped in the next subsection but allows us here to derive simple
results and to focus attention on the structure of our approach.

The scattering of electrons on acoustic phonons is well described within the quasi-
elastic approximation. For a 2D electron gas the energy and momentum relaxation times
have been determined in [18]. Using these results we obtain an expression for the electron
temperature (17)

Te = T
(

1+ 4

3

(eEl0)
2

W 2
0

m1s
2

kBT

)
(23)

which does not depend on the energy variableε. In equation (23) the following energy and
characteristic length scales have been introduced:

W0 = π2h̄2

2m1L2
l0 = πh̄4ρ

2m3
1E

2
1

. (24)

Heres, ρ andE1 are the sound velocity, material density and deformation potential constant,
respectively. Inserting (23) into (17), the current density is easily calculated from equation
(22) and we obtain

j = envac
{
eEl0

kBT

1+ (τimp/τ)Z(E)
1+ Z(E)

}
Z(E) =

√
π

2

√
kBTe

W0
e−εg/kBTe (25)

where the characteristic velocityvac = 4m1Ls
2/3πh̄ has been introduced. The nonlinear

field dependence enters the analytical expression (25) only through the electron temperature
Te.

Figure 2 shows the dimensionless currentj/envac as a function of the electric field
E for τimp/τ = 0.01, T = 77 K, εg = 300 meV and different layer widths. The upper
dashed line is calculated withL = 5 nm and represents the current distributionj1 which
results from mobile electrons in the wells. The lower dashed line shows the second much
smaller partj2 of the current density resulting from electrons within the barriers. This large
difference in the current densities lends further support to our approximate treatment of
electrons in the barriers as nearly trapped (leading to equation (8)). Almost all of the curves
exhibit weak N-shaped NDR characteristics. We remark that figure 2 does not show the
additional linearL-dependence that enters the definition of the characteristic velocityvac.
This leads to an increase of the low-field mobility with increasing well width, which is a
consequence of the fact that the acoustic scattering timeτ is proportional toL [19].
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Figure 2. The current densityj/envac as a function of the electric field forT = 77 K,
εg = 300 meV, andτimp/τ = 0.01 as calculated from equation (25). From the top to the
bottom solid curves the well widthL was incremented in five steps from 5 nm to 10 nm. For
comparison the dashed lines show the current contributionsj1 and j2 (calculated withL = 5
nm) of electrons which reside in the wells and barriers, respectively.

For the large band-edge discontinuity between the minibands of adjacent layers that
is considered (εg = 300 meV) the most important inelastic scattering process is due to
optical phonons, so their influence cannot be neglected. Furthermore, a NDR effect at field
strengths lower than 100 V cm−1 has never been observed in RST structures. That such an
effect appears here is due to the unrealistic restriction to scattering on acoustic phonons. It is
necessary to include scattering on optical phonons, which we will do in the next subsection.

3.2. Scattering on optical phonons

Now scattering on optical phonons is additionally taken into account. Here we will again
restrict consideration to the quasi-elastic approach, and assume that the phonon subsystem
is essentially undisturbed by the layered structure and closely resembles bulk phonons.
The quasi-elastic approximation gives only a crude qualitative picture of optical phonon
scattering in the 2D electron gas but nevertheless allows us here to provide a simple
picture of the main physical mechanisms. The quasi-elastic contribution of the 2D scattering
probability that comprises scattering-in and scattering-out rates due to the absorption and
emission of polar optical phonons of energy ¯hω0 is given by [20]

W(ε, ε′) = L

h̄

|C|2
g2D(ε)g2D(ε′)

∑
k,k′

δ(ε − ε(k))δ(ε′ − ε(k′))

× {(N0+ 1)I2D(k − k′)δ(ε(k′)− ε(k)+ h̄ω0)

+ N0I2D(k
′ − k)δ(ε(k′)− ε(k)− h̄ω0)} (26)

where the coupling constantC of the Fr̈ohlich Hamiltonian has been introduced:

C = i

[
2π

V
e2h̄ω0

(
1

ε∞
− 1

εs

)]
. (27)

Here,V is the crystal volume,N0 = 1/(exp(h̄ω0/kBT )−1) the phonon occupation number,
and ε∞ and εs are the optical and static dielectric constants, respectively. The Fourier
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transformed Coulomb matrix element is expressed by [20]

I2D(q‖) = π

2
L

[
1−G(s)

s2
+ 1/2+ (2− s2/(s2+ π2))G(s)

s2+ π2

]
(28)

where the following definitions have been used:

G(s) = 1− e−2s

2s
s = q‖L

2
. (29)

Performing thek-, k′-integrals in equation (26) we arrive at

w(ε, ε′) = δ(ε′ − ε + h̄ω0)Se(ε)+ δ(ε′ − ε + h̄ω0)Se(ε)

2g2D(ε) sinh(h̄ω0/2kBT )
(30)

where the absorption and emission probabilities are expressed by

Sa(ε) = αω0

π

∫ π

0
d8

k0I2D(k0)√
(ε/h̄ω0) cos28+ 1

(31)

Se(ε) = αω0

π

∫ 8m

0
d8

[( ∑
j=1,2

kj I2D(kj )

)/√
(ε/h̄ω0) cos28− 1

]
2(ε − h̄ω0) (32)

with α being the Fr̈ohlich coupling constant:

α = e2

h̄

√
m1

2h̄ω0

(
1

ε∞
− 1

εs

)
. (33)

Depending on whether emission or absorption is considered, the energy and momentum
conservation allows phonon wavevectors to have different values, determined by

k0 = k[− cos8+
√

cos28+ h̄ω0/ε]

kj = [cos8±
√

cos28− h̄ω0/ε]. (34)

8m = arccos
√
h̄ω0/ε is a cut-off relevant for phonon emission processes. From 1/τ(ε) =∑

k′ W(k, k
′) and equation (30) one easily derives parameters that enter the exponent

(equation (17)) of the distribution function. We obtain

1

τ(ε)
= e−h̄ω0/2kBT Sa(ε)+ ēhω0/2kBT Se(ε)

2 sinh(h̄ω0/2kBT )
+ 3

s

l0

√
W0kBT

(2m1s2)3/2
(35)

g2D(ε)D(ε) = h̄ω0

2 sinh(h̄ω0/2kBT )
[Sa(ε)+ Se(ε)] + 2ε

s

l0

W
3/2
0√

2m1s2
(36)

where the first term on the right-hand side of these equations refers to scattering on polar
optical phonons, whereas the second one comes from scattering on acoustic phonons. The
current is calculated from equation (22) by considering equation (18) and inserting equations
(35), (36) into equation (17). The final result for the current density provides a simple
description of RST in multiple quantum wells subject to parallel electric fields. However,
this approach is restricted to not-too-high field strengths. If the field exceeds a critical value
the electrons gain more energy from the electric field than they lose by the polar optical
phonon emission considered and the simulation does not converge. In this field region it
is no longer possible to neglect heating processes of electrons in the barriers. In addition,
such high-field excitations would result in an intervalley transfer, which is not accounted
for by our present model.

Figure 3 shows numerically calculated current–field characteristics for different well
widths L. In this calculation equal effective masses have been used for the accelerated
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Figure 3. The field dependence of the current density forT = 150 K, εg = 100 meV,
ω0τimp = 1, and different layer widthsL. Scattering on acoustic and polar optical phonons has
been taken into account.v0 is given byv0 = h̄ω0τimp/mL.

motion of electrons in the lower and upper bands. In addition, the characteristic velocity
v0 = h̄ω0τimp/mL has been introduced that depends on the layer widthL, too. A current
maximum appears in the field region between 2 and 3 kV cm−1, which agrees with results
of other more refined calculations and experiments [1]. With increasing layer widths the
current maximum shifts to lower field strengths. The pronounced dependence of the current
on the well width is a peculiarity of the RST mechanism that should be contrasted with
intervalley transfer (the Gunn effect) giving rise to a current maximum at somewhat higher
electric fields [1].

Figure 4. The field dependence of the current density as in figure 3 for scattering on acoustic
and nonpolar optical phonons, withD1 = 1.1× 109 eV cm−1.

It is known that the energy dependence of both the scattering time and energy
relaxation time in quasi-elastic scattering on polar and nonpolar optical phonons differs
even qualitatively [21]. For scattering on polar optical phonons the 3D scattering time
increases with increasing energyε according toτPO(ε) ∼ √ε. On the other hand if the
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scattering is due to nonpolar optical phonons the scattering time decreases with increasing
ε (τDO(ε) ∼ 1/

√
ε). The transport properties turned out to be sensitive to these different

asymptotic energy dependencies. Scattering on nonpolar optical phonons is easily treated
within our approach by making use of the replacementsI2D → 1 and

αω0

π
→ 3

4π

D2
1

ω0L2ρ

m1

h̄2

√
h̄

2m1ω0
(37)

in equations (31) and (32). In equation (37),D1 is the optical deformation potential constant.
Figure 4 shows numerical results obtained for the same set of parameters as were used in
figure 3.

Compared to the case for scattering on polar optical phonons, the current maximum
shifts towards much lower fields and the current decrease in the NDR region is much more
pronounced. Scattering on nonpolar optical phonons is relevant in Ge–Si-based multiple
quantum wells, but is only of minor interest in GaAs–AlAs systems. The comparison
between figures 3 and 4 reveals that the current–voltage characteristics sensitively depend
on the particular scattering mechanisms that are used in the calculation.

4. Summary

Hot-electron thermionic emission due to electric fields parallel to the heterolayers has
attracted a great deal of interest over the past decade. From a theoretical point of view
RST diodes offer an attractive subject of research because there are still open problems to
be addressed. Our objective was to consider quantum transport in a RST structure on the
basis of a two-band model which accounts for quantum confinement in the well and the
transfer into classical 3D regions in the barriers. An N-shapedI–V characteristic with a
static NDR region is only observed when the impurity scattering dominates in the barriers
with the result that there the electron heating effects are not very pronounced. In this case
the set of kinetic equations considerably simplifies because heating in the upper band can be
neglected, so only the particle balance plays a significant role. This approximation makes
the derivation of an analytical solution feasible. Then the problem effectively reduces to
the Boltzmann equation of a 2D electron gas subject to electron–phonon scattering. In
order to grasp the main physics by avoiding extensive numerical calculations, we relied
on the quasi-elastic approximation that is well justified for the treatment of scattering on
acoustic phonons but yields only a qualitative picture of the scattering on optical phonons.
A NDR effect is possible because electrons in the high-mobility wells acquire a high kinetic
energy and are thermionically emitted into the barriers, where their mobility is much lower
due to strongly enhanced impurity scattering, but where the DOS is larger than in the 2D
well region. In contrast to the intervalleyk-space transfer, which is not only observed in
superlattice structures and multiple quantum wells but also in bulk materials, the RST effects
strongly depend on the well width and the energy gap between the ground and first exited
state. This peculiarity and the fact that the current maximum may appear at somewhat lower
fields than in the related bulk material should allow the identification of NDR due to RST.

Our analytical approach was intended to focus on the main physics of the RST device.
One step towards a theory that is even quantitatively reliable would be the numerical solution
of the kinetic equations (10) and (11) for a 2D electron gas. There are also other possibilities
for extending the treatment of RST presented. With obvious modifications the approach
outlined in this paper can be used to investigate NDR observed in QST devices. In these
structures the barriers are made sufficiently thin that tunnelling plays the dominant role.
Such an approach could we hope cope with some open theoretical problems related to QST.
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